Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance
نویسندگان
چکیده
Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY) functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum.
منابع مشابه
Genetic modification of tomato with lycopene β–cyclase gene produces high β–carotene and lycopene fruit
Transgenic Solanum lycopersicum plants expressing an additional copy of lycopene β– cyclase (LCYB) from Nicotiana tabacum, under the control of the Arabidopsis polyubiquitin promoter (UBQ3), have been generated. Expression of LCYB was increased some 10-fold in ripening fruit compared to vegetative tissues. The ripe fruit showed an orange pigmentation, due to increased levels (up to 5-fold) of β...
متن کاملMolecular Cloning and Functional Characterization of the Lycopene ε-Cyclase Gene via Virus-Induced Gene Silencing and Its Expression Pattern in Nicotiana tabacum
Lycopene ε-cyclase (ε-LCY) is a key enzyme that catalyzes the synthesis of α-branch carotenoids through the cyclization of lycopene. Two cDNA molecules encoding ε-LCY (designated Ntε-LCY1 and Ntε-LCY2) were cloned from Nicotiana tabacum. Ntε-LCY1 and Ntε-LCY2 are encoded by two distinct genes with different evolutionary origins, one originating from the tobacco progenitor, Nicotiana sylvestris,...
متن کاملRegeneration of Glyphosate-Tolerant Nicotiana tabacum after Plastid Transformation with a Mutated Variant of Bacterial aroA gene
Presence of antibiotic resistance markers has always been considered as one of the main safety concerns in transgenic plants and their derived products. Elimination of antibiotic selectable markers from transgenics is a major hurdle for finding efficient and safe candidates. Herbicide tolerance genes might be attractive alternatives. In this study, a variant form of the 5-enoylpyruvyl shikimate...
متن کاملTransformation of beta-lycopene cyclase genes from Salicornia europaea and Arabidopsis conferred salt tolerance in Arabidopsis and tobacco.
Inhibition of lycopene cyclization decreased the salt tolerance of the euhalophyte Salicornia europaea L. We isolated a β-lycopene cyclase gene SeLCY from S. europaea and transformed it into Arabidopsis with stable expression. Transgenic Arabidopsis on post-germination exhibited enhanced tolerance to oxidative and salt stress. After 8 and 21 d recovery from 200 mM NaCl treatment, transgenic lin...
متن کاملA Wheat WRKY Transcription Factor TaWRKY10 Confers Tolerance to Multiple Abiotic Stresses in Transgenic Tobacco
WRKY transcription factors are reported to be involved in defense regulation, stress response and plant growth and development. However, the precise role of WRKY transcription factors in abiotic stress tolerance is not completely understood, especially in crops. In this study, we identified and cloned 10 WRKY genes from genome of wheat (Triticum aestivum L.). TaWRKY10, a gene induced by multipl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2015